才子书屋

第二百五十七章 见证奇迹吧!(上)

+A -A

......

    如果把这两个过程合到一块呢?

    那是不是就可以说:

    距离的差除以一次时间差,再除以一次时间差就可以得到加速度?

    当然了。

    这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。

    如果把距离看作关于时间的函数,那么对这个函数求一次导数:

    就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数、

    对速度的函数再求一次导数,就得到了加速度的表示。

    鲜为人同学们懂不懂不知道,反正在场的这些大老们很快便都想到了这一点。

    是的。

    之前所列的函数f(x,t)描述的内容,就是波段上某一点在不同时间t的位置!

    所以只要对对f(x,t)求两次关于时间的导数,自然就得到了这点的加速度a。

    因为函数f是关于x和t两个变量的函数,所以只能对时间的偏导?f/?t,再求一次偏导数就加个2上去。

    因此很快。

    包括法拉第在内,所有大老们都先后写下了一个数值:

    加速度a=?2f/?t2。

    而将这个数值与之前的合力与质量相结合,那么一个新的表达式便出现了:

    F= T·sin(θ Δθ)-T·sinθ=μ·Δx?2f/?t2。

    随后威廉·韦伯认真看了眼这个表达式,眉头微微皱了些许:

    “罗峰同学,这就是最终的表达式吗?我似乎感觉好像还能化简?”

    徐云点了点头:

    “当然可以。”

    F= T·sin(θ Δθ)-T·sinθ=μ·Δxa?2f/?t2。

    这是一个最原始的方程组,内容不太清晰,方程左边的东西看着太麻烦了。

    因此还需要对它进行一番改造。

    至于改造的思路在哪儿呢?

    当然是sinθ了。

    只见徐云拿起笔,在纸上画了个直角三角形。

    众所周知。

    正弦值sinθ等于对边c除以斜边a,正切值tanθ等于对边c除以邻边b。

    徐云又画了个夹角很小的直角三角形,角度估摸着只有几度:

    “但是一旦角度θ非常非常小,那么邻边b和斜边a就快要重合了。”

    “这时候我们是可以近似的认为a和b是相等的,也就是a≈b。”

    随后在纸上写到:

    【于是就有c/b≈θ≈sinθ。】

    【之前的公式可写成F= T·tan(θ Δθ)-T·tanθ=μ·Δxa?2f/?t2。】

    “稍等一下。”

    看到这句话,法拉第忽然皱起了眉头,打断了徐云。

    很明显。

    此时他已经隐隐出现了掉队的迹象:

    “罗峰同学,用tanθ替代sinθ的意义是什么?”

    徐云又看了小麦,小麦当即心领神会:

    “法拉第先生,因为正切值tanθ还可以代表一条直线的斜率呀,也就是代表曲线在某一点的导数。”

    “正切值的表达式是tanθ=c/b,如果建一个坐标系,那么这个c刚好就是直线在y轴的投影dy,b就是在x轴的投影dx。”

    “它们的比值刚好就是导数dy/dx,也就是说tanθ=dy/dx。”

    法拉第认真听完,花了两分钟在纸上演算了一番,旋即恍然的一拍额头:

    “原来如此,我明白了,请继续吧,罗峰同学。”

    徐云点点头,继续解释道:

    “因为波的函数f(x,t)是关于x和t的二元函数,所以我们只能求某一点的偏导数。”

    “那么正切值就等于它在这个点的偏导数tanθ=?f/?x,原来的波动方程就可以写成这样......”

    随后徐云在纸上写下了一个新方程:

    T(?f/?xlx △x-?f/?xlx)=μ·Δxa?2f/?t2。

    看起来比之前的要复杂一些,但现场的这些大老的目光,却齐齐明亮了不少。

    到了这一步,接下来的思路就很清晰了。

    只要再对方程的两边同时除以Δx,那左边就变成了函数?f/?x在x Δx和x这两处的值的差除以Δx。

    这其实就是?f/?x这个函数的导数表达式。

    也就是说。

    两边同时除以一个Δx之后,左边就变成了偏导数?f/?x对x再求一次导数,那就是f(x,t)对x求二阶偏导数了。

    同时上面已经用?2f/?t2来表示函数对t的二阶偏导数,那么这里自然就可以用?2f/?x2来表示函数对x


【1】【2】【3】【4】【5】
如果您喜欢【才子书屋】,请分享给身边的朋友
">