“庞教授,你的意思是,理论上可能存在第四种中微子,这种中微子没办法通过Z玻色子衰变观测到?”
中科院高能物理所的实验室内,高能物理研究所所长乔安华看着庞学林,皱眉道。
过去半年间,庞学林也没闲着。
提出地球大炮工程的同时,也贡献了不少数学、物理领域的顶级论文。
有些是他以前的科研成果,有些干脆源自于系统奖励。
因此,目前在科学界,庞学林的名号算的上响当当。
这也是他提出有可能存在第四种重中微子,乔安华没有直接反驳的原因。
庞学林点头微笑道:“按照我给出的模型计算结果,确实应该存在这样一种重中微子。”
“可是……为什么我们到现在都没有发现这种中微子的存在?”
乔安华问到了问题的关键。
人类第一次探测到中微子,是1956年美国物理学家莱尼斯和科恩小组,利用萨瓦纳河工厂的反应堆,进行的一次实验。
实验反应堆产生强大的中子流并伴有大量的β衰变,放射出电子和反中微子,反中微子轰击水中的质子,产生中子和正电子,当中子和正电子进入到探测器中的靶液时,中子被吸收,正电子与负电子湮灭,产生高能γ射线,从而来判定反应的产生。
虽然反中微子通量高达每秒每平方厘米5×10的13次方个,但当时的探测记数每小时还不到3个。
1983年,物理学家在日本岐阜县利用“切伦科夫辐射”原理建立了超级神冈探测器。
超级神冈探测器的主体部分是一个建设在地下1000米深处的巨大水罐,盛有约5万吨高纯度水,罐的内壁则附着1.1万个光电倍增管,用来探测中微子穿过水中时发射出的切伦科夫光,从而捕捉到中微子的踪迹。
所谓切伦科夫辐射是指当带电粒子在介质中穿行时,其速度超过光在介质中的速度υ时就会发生切伦科夫辐射,发出切伦科夫光。
具体来说,当中微子束穿过水中时,与水原子核发生核反应,生成高能量的负μ子。由于负μ子在水中以0.99倍光速前进,超过了水中的光速(0.75倍光速),所以它在水中穿越六七米长的路径便会发生“切伦科夫效应”,辐射出所谓的“切伦科夫光”。
这种光不但囊括了0.38-0.76微米范围内的所有连续分布的可见光,而且具有确定的方向性。
因此,只要用高灵敏度的光电倍增列阵将“切伦科夫光”全部收集起来,也就探测到了中微子束。
从某种意义上说,这也是中微子通信技术的基本原理。
而现在,已经是2075年,不同种类的中微子探测技术早已成熟,但除了此前提到过的三种中微子外,人类并没有发现第四种中微子的存在。
理论部分和实验,要么是理论有问题,要么是实验存在问题!
站在乔安华的角度看,怎么都是庞学林的理论有问题。
庞学林微微一笑,说道:“乔教授,我们现在是怎么确定中微子的不同分类的?”
乔安华想了想,说道:“从实验角度来说,中微子按照总是(量子力学的几率效应)伴随它们一起参与弱反应的轻子来分类。”
“比如发现中微子的es实验,科学家们先假设核反应堆里进行着的β衰变反应会产生中微子。这些中微子从反应堆里飞出来后,在反应堆外放置适当的探测装置进行探测。装置中盛放的液体(氯化镉)含有大量质子,理论预期中微子与质子有逆β衰变反应。其中正电子可以与探测液体中的电子发生湮灭产生光,然后通过光电效应传感器读出这一光信号(以及光信号到达的时间、能量等等)。而中子可以被液体中的重金属(镉)吸收然后放出光,这个过程稍慢点。es实验看到了前后两个光信号,且光信号符合预期,那么就说存在逆β衰变反应,进而证明了存在中微子。”
“对这一实验进一步分析,正负电子湮灭产生的光信号说明了核反应堆产生的中微子伴随着正电子出现,所以这个实际上为反电子中微子。早期的太阳中微子发现者Ray Davis曾尝试过同样利用核反应堆的中微子,用这一反应来检测。但是从核反应堆他得不到预期的结果。后来这一同样反应被用在探测太阳中微子上,是可以看到结果的。这个说明伴随着e-和e 反应的中微子是不同的。核反应堆产生的是反电子中微子,而太阳核反应产生的是电子中微子。这个的根本原因来自于核反应左右两边除了要求电荷守恒外,还要求轻子数守恒。正电子、反电子中微子的轻子数记为-e,电子、电子中微子的轻子数是 e。”
“其后,Lederman等人研究加速器里产生的中微子。加速器中产生的中微子主要来自π介子衰变。他们期待两个逆β衰变反应。然而,他们没有观测到反应1,只有反应2。这个说明加速器产生的中微子,在逆β衰变反应过程中总是伴随着正缪子而非正电子。缪